Databricks — 5 min read

How do data scientists combine Kedro and Databricks?

In recent research, we learned that Databricks is the dominant machine-learning platform used by Kedro users. We investigated aspects of our users' data science workflows to prioritise seamless Kedro usage, and we are collaborating with Databricks on our findings.

14 Apr 2023 (last updated 20 Nov 2023)
cover image alt

In recent research, we found that Databricks is the dominant machine-learning platform used by Kedro users.

The purpose of the research was to identify any barriers to using Kedro with Databricks; we are collaborating with the Databricks team to create a prioritized list of opportunities to facilitate integration. For example, Kedro is best used with an IDE, but IDE support on Databricks is still evolving, so we are keen to understand the pain points that Kedro users face when combining it with Databricks.

Our research took qualitative data from 16 interviews, and quantitative data from a poll (140 participants) and a survey (46 participants) across the McKinsey and open-source Kedro user bases. We analysed two user journeys.

How to ensure a Kedro pipeline is available in a Databricks workspace

The first user journey we considered is how a user ensures the latest version of their pipeline codebase is available within the Databricks workspace. The most common workflow is to use Git, but almost a third of the users in our research set said there were a lot of steps to follow. The alternative workflow, which is to use dbx sync to Databricks repos, was used by less than 10% of the users we researched, indicating that awareness of this option is low.

databricks-slide-1

How to ensure the latest version of a Kedro pipeline runs on Databricks

How to run Kedro pipelines using a Databricks cluster

The second user journey is how users run Kedro pipelines using a Databricks cluster. The most popular method, used by over 80% of participants in our research, is to use a Databricks notebook, which serves as an entry point to run Kedro pipelines. We discovered that many users were unaware of the IPython extension that significantly reduces the amount of code required to run Kedro pipelines in Databricks notebooks.

We also found that some users run their Kedro pipelines by packaging them and running the resulting Python package on Databricks. However, Kedro did not support the packaging of configurations until version 18.5, which has caused problems. The final option some users select is to use Databricks Connect, but this is not recommended since it is soon to be sunsetted by Databricks.

databricks-slide-2

How to run a Kedro pipeline on a Databricks cluster.

The output of our research

To make it easier to pair Kedro and Databricks, we are updating Kedro’s documentation to cover the latest Databricks features and tools, particularly the development and deployment workflows for Kedro on Databricks with DBx. The goal is to help Kedro users take advantage of the benefits of working locally in an IDE and still deploy to Databricks with ease.

You can expect this new documentation to be released in the next one to two weeks.

We will also be creating a Kedro Databricks plugin or starter project template to automate the recommended steps in the documentation.

Coming soon…

We have a managed Delta table dataset available in our Kedro datasets repo, which will be available for public consumption soon. We are also planning to support managed MLflow on Databricks.

We have set up a milestone on GitHub so you can check in on our progress and contribute if you want to. To suggest features to us, report bugs, or just see what we’re working on right now, visit the Kedro projects on GitHub. We welcome every contribution, large or small.

Find out more about Kedro

There are many ways to learn more about Kedro:


On this page:

Photo of Jo Stichbury
Jo Stichbury
Technical Writer, QuantumBlack
Share post:
Twitter logoLinkedIn logo

All blog posts

cover image alt

Feature highlight — 5 min read

Top 10 features added to the Kedro ecosystem in 2024

This blog post highlights ten of the most notable enhancements and improvements to the Kedro ecosystem in the recent releases.

Merel Theisen

7 Oct 2024

cover image alt

Kedro newsletter — 5 min read

In the pipeline: October 2024

From the latest news to upcoming events and interesting topics, “In the Pipeline” is overflowing with updates for the Kedro community.

Jo Stichbury

2 Oct 2024

cover image alt

News — 5 min read

Introducing a Kedro extension for VS Code

We're launching a Kedro extension for VS Code that offers enhanced code navigation and autocompletion.

Nok Lam Chan

1 Aug 2024

cover image alt

Kedro newsletter — 5 min read

In the pipeline: July 2024

From the latest news to upcoming events and interesting topics, “In the Pipeline” is overflowing with updates for the Kedro community.

Jo Stichbury

1 Jul 2024

cover image alt

SQL in Python — 7 min read

Streamlining SQL Data Processing in Kedro ML Pipelines

Kedro and Ibis streamline the management of ML pipelines and SQL queries within a Python project, leveraging Google BigQuery for efficient execution and storage.

Dmitry Sorokin

5 Jun 2024